Using Visual Ozone Damage Scores and Spectroscopy to Quantify Soybean Responses to Background Ozone

Author:

Gosselin Nichole,Sagan VasitORCID,Maimaitiyiming Matthew,Fishman Jack,Belina Kelley,Podleski Ann,Maimaitijiang Maitiniyazi,Bashir Anbreen,Balakrishna Jayashree,Dixon Austin

Abstract

Remotely-sensed identification of ozone stress in crops can allow for selection of ozone resistant genotypes, improving yields. This is critical as population, food demand, and background tropospheric ozone are projected to increase over the next several decades. Visual scores of common ozone damage have been used to identify ozone-stress in bio-indicator plants. This paper evaluates the use of a visual scoring metric of ozone damage applied to soybeans. The scoring of the leaves is then combined with hyperspectral data to identify spectral indices specific to ozone damage. Two genotypes of soybean, Dwight and Pana, that have shown different sensitivities to ozone, were grown and visually scored for ozone-specific damage on multiple dates throughout the growing season. Leaf reflectance, foliar biophysical properties, and yield data were collected. Additionally, ozone bio-indicator plants, snap beans, and common milkweed, were investigated with visual scores and hyperspectral leaf data for comparison. The normalized difference spectral index (NDSI) was used to identify the significant bands in the visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) that best correlated with visual damage score when used in the index. Results were then compared to multiple well-established indices. Indices were also evaluated for correlation with seed and pod weight. The ozone damage scoring metric for soybeans evaluated in August had a coefficient of determination of 0.60 with end-of-season pod weight and a Pearson correlation coefficient greater than 0.6 for photosynthetic rate, stomatal conductance, and transpiration. NDSI [R558, R563] correlated best with visual scores of ozone damage in soybeans when evaluating data from all observation dates. These wavelengths were similar to those identified as most sensitive to visual damage in August when used in NDSI (560 nm, 563 nm). NDSI [R560, R563] in August had the highest coefficient of determination for individual pod weight (R2 = 0.64) and seed weight (R2 = 0.54) when compared against 21 well-established indices used for identification of pigment or photosynthetic stress in plants. When evaluating use of spectral bands in NDSI, longer wavelengths in SWIR were identified as more sensitive to ozone visual damage. Trends in the bands and biophysical properties of the soybeans combined with evaluation of ozone data indicate likely timing of significant ozone damage as after late-July for this season. This work has implications for better spectral detection of ozone stress in crops and could help with efforts to identify ozone tolerant varieties to increase future yield.

Funder

National Aeronautics and Space Administration

National Science Foundation

U.S. Department of Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3