EMMCNN: An ETPS-Based Multi-Scale and Multi-Feature Method Using CNN for High Spatial Resolution Image Land-Cover Classification

Author:

Zhang Shuyu,Li Chuanrong,Qiu Shi,Gao Caixia,Zhang FengORCID,Du Zhenhong,Liu Renyi

Abstract

Land-cover information is significant for land-use planning, urban management, and environment monitoring. This paper presented a novel extended topology-preserving segmentation (ETPS)-based multi-scale and multi-feature method using the convolutional neural network (EMMCNN) for high spatial resolution (HSR) image land-cover classification. The EMMCNN first segmented the images into superpixels using the ETPS algorithm with false-color composition and enhancement and built parallel convolutional neural networks (CNNs) with dense connections for superpixel multi-scale deep feature learning. Then, the multi-resolution segmentation (MRS) object hand-delineated features were extracted and mapped to superpixels for complementary multi-segmentation and multi-type representation. Finally, a hybrid network was designed to consist of 1-dimension CNN and multi-layer perception (MLP) with channel-wise stacking and attention-based weighting for adaptive feature fusion and comprehensive classification. Experimental results on four real HSR GaoFen-2 datasets demonstrated the superiority of the proposed EMMCNN over several well-known classification methods in terms of accuracy and consistency, with overall accuracy averagely improved by 1.74% to 19.35% for testing images and 1.06% to 8.78% for validating images. It was found that the solution combining an appropriate number of larger scales and multi-type features is recommended for better performance. Efficient superpixel segmentation, networks with strong learning ability, optimized multi-scale and multi-feature solution, and adaptive attention-based feature fusion were key points for improving HSR image land-cover classification in this study.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3