Abstract
Land-cover information is significant for land-use planning, urban management, and environment monitoring. This paper presented a novel extended topology-preserving segmentation (ETPS)-based multi-scale and multi-feature method using the convolutional neural network (EMMCNN) for high spatial resolution (HSR) image land-cover classification. The EMMCNN first segmented the images into superpixels using the ETPS algorithm with false-color composition and enhancement and built parallel convolutional neural networks (CNNs) with dense connections for superpixel multi-scale deep feature learning. Then, the multi-resolution segmentation (MRS) object hand-delineated features were extracted and mapped to superpixels for complementary multi-segmentation and multi-type representation. Finally, a hybrid network was designed to consist of 1-dimension CNN and multi-layer perception (MLP) with channel-wise stacking and attention-based weighting for adaptive feature fusion and comprehensive classification. Experimental results on four real HSR GaoFen-2 datasets demonstrated the superiority of the proposed EMMCNN over several well-known classification methods in terms of accuracy and consistency, with overall accuracy averagely improved by 1.74% to 19.35% for testing images and 1.06% to 8.78% for validating images. It was found that the solution combining an appropriate number of larger scales and multi-type features is recommended for better performance. Efficient superpixel segmentation, networks with strong learning ability, optimized multi-scale and multi-feature solution, and adaptive attention-based feature fusion were key points for improving HSR image land-cover classification in this study.
Funder
National Key Research and Development Program of China
Subject
General Earth and Planetary Sciences
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献