Smart Aging System: Uncovering the Hidden Wellness Parameter for Well-Being Monitoring and Anomaly Detection

Author:

Ghayvat Hemant,Awais Muhammad,Pandya Sharnil,Ren Hao,Akbarzadeh Saeed,Chandra Mukhopadhyay Subhas,Chen Chen,Gope ProsantaORCID,Chouhan Arpita,Chen Wei

Abstract

Background: Ambiguities and anomalies in the Activity of Daily Living (ADL) patterns indicate deviations from Wellness. The monitoring of lifestyles could facilitate remote physicians or caregivers to give insight into symptoms of the disease and provide health improvement advice to residents; Objective: This research work aims to apply lifestyle monitoring in an ambient assisted living (AAL) system by diagnosing conduct and distinguishing variation from the norm with the slightest conceivable fake alert. In pursuing this aim, the main objective is to fill the knowledge gap of two contextual observations (i.e., day and time) in the frequent behavior modeling for an individual in AAL. Each sensing category has its advantages and restrictions. Only a single type of sensing unit may not manage composite states in practice and lose the activity of daily living. To boost the efficiency of the system, we offer an exceptional sensor data fusion technique through different sensing modalities; Methods: As behaviors may also change according to other contextual observations, including seasonal, weather (or temperature), and social interaction, we propose the design of a novel activity learning model by adding behavioral observations, which we name as the Wellness indices analysis model; Results: The ground-truth data are collected from four elderly houses, including daily activities, with a sample size of three hundred days plus sensor activation. The investigation results validate the success of our method. The new feature set from sensor data fusion enhances the system accuracy to (98.17% ± 0.95) from (80.81% ± 0.68). The performance evaluation parameters of the proposed model for ADL recognition are recorded for the 14 selected activities. These parameters are Sensitivity (0.9852), Specificity (0.9988), Accuracy (0.9974), F1 score (0.9851), False Negative Rate (0.0130).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revolutionizing healthcare: IoMT-enabled digital enhancement via multimodal ADL data fusion;Information Fusion;2024-11

2. Human Activity Recognition with Unsupervised Learning of Event Logs;Journal of Computer Information Systems;2024-09-06

3. Intersections of Law and Computational Intelligence in Health Governance;Advances in Electronic Government, Digital Divide, and Regional Development;2024-08-30

4. A review of video-based human activity recognition: theory, methods and applications;Multimedia Tools and Applications;2024-07-10

5. Prediction of the Intensity of Physical Movement of Aged People;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3