Effect of Segregation on Deformation Behaviour of Nanoscale CoCrCuFeNi High-Entropy Alloy

Author:

Kazakov Arseny M.1ORCID,Yakhin Azat V.1,Karimov Elvir Z.2,Babicheva Rita I.3,Kistanov Andrey A.1ORCID,Korznikova Elena A.1ORCID

Affiliation:

1. The Laboratory of Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia

2. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia

3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

A molecular dynamics (MD) simulation method is used to investigate the effect of grain boundary (GB) segregation on the deformation behavior of bicrystals of equiatomic nanoscale CoCrCuFeNi high-entropy alloy (HEA). The deformation mechanisms during shear and tensile deformation at 300 K and 100 K are analyzed. It is revealed that upon tensile deformation, the stacking fault formation, and twinning are the main deformation mechanisms, while for the shear deformation, the main contribution to the plastic flow is realized through the GB migration. The presence of the segregation at GBs leads to the stabilization of GBs, while during the shear deformation of the nanoscale CoCrCuFeNi HEA without the segregation at GBs, GBs are subject to migration. It is found that the GB segregation can differently influence the plasticity of the nanoscale CoCrCuFeNi HEA, depending on the elemental composition of the segregation layer. In the case of copper and nickel segregations, an increase in the segregation layer size enhances the plasticity of the nanoscale CoCrCuFeNi HEA. However, an increase in the thickness of chromium segregations deteriorates the plasticity while enhancing maximum shear stress. The results obtained in this study shed light on the development of HEAs with enhanced mechanical properties via GB engineering.

Funder

Ministry of Science and Higher Education of the Russian Federation

Youth Research Laboratory of the Center for Metals and Alloys

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3