Frequency-Limited Model Reduction for Linear Positive Systems: A Successive Optimization Method

Author:

Ren Yingying12,Wang Qian13

Affiliation:

1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China

3. Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, Beijing 100083, China

Abstract

This paper studies frequency-limited model reduction for linear positive systems. Specifically, the objective is to develop a reduced-order model for a high-order positive system that preserves the positivity, while minimizing the approximation error within a given H∞ upper bound over a limited frequency interval. To characterize the finite-frequency H∞ specification and stability, we first present the analysis conditions in the form of bilinear matrix inequalities. By leveraging these conditions, we derive convex surrogate constraints by means of an inner-approximation strategy. Based on this, we construct a novel iterative algorithm for calculating and optimizing the reduced-order model. Finally, the effectiveness of the proposed model reduction method is illustrated with a numerical example.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of Shunde Innovation School, University of Science and Technology Beijing

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved model order reduction techniques with error bounds;International Journal of Systems Science;2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3