Detecting COVID-19 Effectively with Transformers and CNN-Based Deep Learning Mechanisms

Author:

Umejiaku Afamefuna Promise1,Dhakal Prastab1,Sheng Victor S.1ORCID

Affiliation:

1. Computer Science Department, Texas Tech University, Lubbock, TX 79409, USA

Abstract

The COVID-19 pandemic has been a major global concern in the field of respiratory diseases, with healthcare institutions and partners investing significant resources to improve the detection and severity assessment of the virus. In an effort to further enhance the detection of COVID-19, researchers have investigated the performance of current detection methodologies and proposed new approaches that leverage deep learning techniques. In this article, the authors propose a two-step transformer model for the multi-class classification of COVID-19 images in a patient-aware manner. This model is implemented using transfer learning, which allows for the efficient use of pre-trained models to accelerate the training of the proposed model. The authors compare the performance of their proposed model to other CNN models commonly used in the detection of COVID-19. The experimental results of the study show that CNN-based deep learning networks obtained an accuracy in the range of 0.76–0.92. However, the proposed two-step transformer model implemented with transfer learning achieved a significantly higher accuracy of 0.9735 ± 0.0051. This result indicates that the proposed model is a promising approach to improving the detection of COVID-19. Overall, the findings of this study highlight the potential of deep learning techniques, particularly the use of transfer learning and transformer models, to enhance the detection of COVID-19. These approaches can help healthcare institutions and partners to reduce the time and difficulty in detecting the virus, ultimately leading to more effective and timely treatment for patients.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3