Vehicular Edge-Computing Framework for Making Use of Parking and Charging Electric Vehicles

Author:

Deng Qi1ORCID,Zeng Feng1ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

Abstract

In big cities, there are more and more parking lots and charging piles for electric vehicles, and the resources of parking and charging vehicles can be aggregated to provide strong computing power for vehicular edge computing (VEC). In this paper, we propose a VEC framework that uses charging vehicles in parking lots to assist edge servers in processing computational tasks, and an edge crowdsourcing platform (ECP) is designed to manage and integrate the idle computation resources of electric vehicles in parking lots to provide computation services for requesting vehicles. Based on game theory, we first model the interactions among the edge server, the ECP and the requesting vehicles as a Stackelberg game, and theoretically prove the existence of a Nash equilibrium for this Stackelberg game. Then, a genetic algorithm-based game-strategy solving algorithm is proposed to find the optimal strategy for the edge server and ECP. The simulation results demonstrate that the performance of our proposed solution is better than other traditional solutions. Compared with the solution without ECP, our solution can increase the utilities of the edge server and the requesting vehicle by 13.3% and 10.99%, respectively.

Funder

National Science Foundation of China

the Key R&D Plan of Hunan Province

the Nature Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed Machine Learning with Electric Vehicles in Parking Lots;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. An Improved SD-Jaya Algorithm for Multi-Objective Edge Computing Problem in IRS-Aided Charging Electric Vehicular Networks;2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3