Illegal Domain Name Generation Algorithm Based on Character Similarity of Domain Name Structure

Author:

Liang Yuchen1,Cheng Yanan1ORCID,Zhang Zhaoxin1,Chai Tingting1,Li Chao1

Affiliation:

1. Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China

Abstract

Detecting and controlling illegal websites (gambling and pornography sites) through illegal domain names has been an unsolved problem. Therefore, how to mine and discover potential illegal domain names in advance has become a current research hotspot. This paper studies a method of generating illegal domain names based on the character similarity of domain name structure. Firstly, the K-means algorithm classified illegal domain names with similar structures. Then, put the classified clusters into the adversarial generative network for training. Finally, through a specific result verification method, the experiment shows that the average concentration of the generation algorithm is 23.82%, the effective concentration is 63.54%, and the expansion rate is 7.5. By comparing the results with the enumeration algorithm, the generation algorithm has greatly improved in terms of generation efficiency and accuracy.

Funder

Natural Science Foundation of Shandong Province

Young Teacher Development Fund of Harbin Institute of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3