Towards Delay Tolerant Networking for Connectivity Aware Routing Protocol for VANET-WSN Communications

Author:

Mohaisen Linda1ORCID,Joiner Laurie2

Affiliation:

1. Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Electrical and Computer Engineering, University of Alabama-Huntsville, Huntsville, AL 35899, USA

Abstract

Vehicular Ad Hoc Networks (VANETs) are increasingly playing a fundamental role in improving driving safety. However, VANETs in a sparse environment may add risk to driving safety. The probability of a low density of vehicles in a rural area at midnight is very high. Consequently, the packet will be lost due to the lack of other vehicles, and the arrival of the following vehicles in the accident area is unavoidable. To overcome this problem, VANET is integrated with Wireless Sensor Network (WSN). The most challenging features of VANETs are their high mobility. This high mobility causes sensor nodes to consume most of their energy during communication with other nodes, leading to frequent network disconnectivity. With the evolution of VANET and WSN, the Store/Carry-Forward (SCF) paradigm has emerged as an exciting research area in the Delay Tolerant Networks (DTNs) to solve network disconnectivity. This paper proposes the Energy-Mobility-Connectivity aware routing protocol (EMCR) for a hybrid network of VANET-WSN. A comprehensive performance analysis that considers realistic propagation models and real city scenario traffic is performed in NS3. The simulation results show that the SCF mechanism is essential in the EMCR protocol to maximize the delivery ratio and minimize energy consumption and overhead.

Funder

Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3