The Biomechanical Effects of Cross-Legged Sitting on the Lower Limbs and the Implications in Rehabilitation

Author:

Alsirhani Hadeel12,Arnold Graham1,Wang Weijie1ORCID

Affiliation:

1. Department of Orthopedic & Trauma Surgery, Tayside Orthopaedics and Rehabilitation Technology Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK

2. Department of Physical Therapy and Rehabilitation, School of Medical Applied Sciences, Al-Jouf University, Sakakah 72388, Saudi Arabia

Abstract

Background: While cross-legged-sitting (CLS) posture is widely practised in some communities, its biomechanical effect on the lower limbs is not clear. This study aimed to investigate whether CLS would affect biomechanical parameters in lower limbs during gait. Methods: Thirty healthy volunteers participated in this study and performed CLS on ground for 20 min. Their modes of gait were compared before and after CLS regarding to temporospatial parameters and the kinetic and kinematic parameters in the lower limb joints. Results: CLS significantly increased walking cadence and speed. In kinematics, the ranges of motion for almost all lower limb joints were increased after CLS except the knee in sagittal plane. In kinetics, the medial and lateral forces increased significantly after CLS in the lower limb joints, e.g., the hip posterior force was increased more than 14% on both sides. Furthermore, all hip, knee, and ankle powers were increased significantly after CLS. Conclusion: CLS has a positive impact on the biomechanical parameters of almost all lower limb joints except the knee flexion/extension angle and internal/external joint moments. Therefore, CLS can be used in the daily routine and in any rehabilitation programme to improve the biomechanical parameters of the lower extremities.

Funder

University of Dundee the Library’s Institutional Open Access Fund

PhD studentship from Al-Jouf University, Saudi Ariba

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3