Effect of Spring-Mass-Damper Pedestrian Models on the Performance of Low-Frequency or Lightweight Glazed Floors

Author:

Bedon Chiara1ORCID,Santos Filipe A.2ORCID

Affiliation:

1. Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy

2. CERIS-NOVA, Department of Civil Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal

Abstract

For structural design purposes, human-induced loads on pedestrian systems can be described by several simplified (i.e., deterministic equivalent-force models) or more complex computational approaches. Among others, the Spring-Mass-Damper (SMD), Single Degree of Freedom (SDOF) model has been elaborated by several researchers to describe single pedestrians (or groups) in the form of equivalent body mass m, spring stiffness k and damping coefficient c. For all these literature SMD formulations, it is proved that the biodynamic features of walking pedestrians can be realistically reproduced, with high computational efficiency for vibration serviceability assessment of those pedestrian systems mostly sensitive to human-induced loads (i.e., with vibration frequency f1 < 8 Hz). Besides, the same SMD proposals are characterized by mostly different theoretical and experimental assumptions for calibration. On the practical side, strongly different SMD input parameters can thus be obtained for a given pedestrian. This paper focuses on a selection of literature on SMD models, especially on their dynamic effects on different structural floor systems. Four different floors are explored (F#1 and F#2 made of concrete, F#3 and F#4 of glass), with high- or low-frequency, and/or high- (>1/130th) or low- (1/4th) mass ratio, compared to the occupant. Normal walking scenarios with frequency in the range fp = 1.5–2 Hz are taken into account for a total of 100 dynamic simulations. The quantitative comparison of typical structural performance indicators for vibration serviceability assessment (i.e., acceleration peak, RMS, CREST) shows significant sensitivity to input SMD assumptions. Most importantly, the sensitivity of structural behaviours is observed for low-frequency systems, as expected, but also for low-mass structures, which (as in the case of glazed floor solutions) can be characterized by the use of lightweight modular units with relatively high vibration frequency. As such, major attention can be required for their vibrational analysis and assessment.

Funder

Civil Engineering Research and Innovation for Sustainability

Fundação para a Ciência e a Tecnologia (FCT) in the framework

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3