Evaluation of Gelatin/Hyaluronic Acid-Generated Bridging in a 3D-Printed Titanium Cage for Bone Regeneration

Author:

Park Seong-Su1,Farwa Ume2,Hossain Mosharraf3ORCID,Im Soobin23,Lee Byong-Taek12ORCID

Affiliation:

1. Department of Regenerative Medicine, College of Medicine, Soonchunhyang University Cheonan, Cheonan 31151, Republic of Korea

2. Institute of Tissue Regeneration, Soonchunhyang University Cheonan, Cheonan 31151, Republic of Korea

3. Department of Neurosurgery, Soonchunhyang University, Bucheon Hospital, Bucheon 14584, Republic of Korea

Abstract

3D-printed titanium (Ti) cages present an attractive alternative for addressing issues related to osteoporosis-induced fractures, accidental fractures, and spinal fusion surgery due to disc herniation. These Ti-based bone implants possess superior strength compared to other metals, allowing for versatile applications in orthopedic scenarios. However, when used as standalone solutions, certain considerations may arise, such as interaction with soft tissues. Therefore, to overcome these issues, the combination with hydrogel has been considered. In this study, to impart Ti with regenerative abilities a 3D-printed Ti cage was loaded with gelatin and hyaluronic acid (G-H) to improve the cell attachment ability of the Ti-based bone implants. The void spaces within the mesh structure of the 3D Ti cage were filled with G-H, creating a network of micro-sized pores. The filled G-H acted as the bridge for the cells to migrate toward the large inner pores of the 3D Ti cage. Due to the microporous surface and slow release of gelatin and hyaluronic acid, the biocompatibility of the coated Ti cage was increased with an elevation in osteoconduction as depicted by the up-regulation of bone-related gene expressions. The in vivo implantation in the rabbit femur model showed enhanced bone regeneration due to the coated G-H on the Ti cage compared to the pristine hollow Ti cage. The G-H filled the large holes of the 3D Ti cage that acted as a bridge for the cells to travel inside the implant and aided in the fast regeneration of bone.

Funder

National Research Foundation of Korea

Ministry of Education

Soonchunhyang University

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3