An Interoperable Digital Twin with the IEEE 1451 Standards

Author:

da Rocha HelbertORCID,Pereira JoãoORCID,Abrishambaf RezaORCID,Espirito Santo AntonioORCID

Abstract

The shop floor or factory floor is the area inside a factory where manufacturing production is executed. The digitalisation of this area has been increasing in the last few years, introducing the Digital Twin (DT) and the Industry 4.0 concepts. A DT is the digital representation of a real object or an entire system. A DT includes a high diversity of components from different vendors that need to interact with each other efficiently. In most cases, the development of standards and protocols does not consider the need to operate with other standards and protocols, causing interoperability issues. Transducers (sensors and actuators) use the communication layer to exchange information with digital contra parts, and for this reason, the communication layer is one of the most relevant aspects of development. This paper covers DT development, going from the physical to the visualisation layer. The reference architecture models, standards, and protocols focus on interoperability to reach a syntactic level of communication between the IEEE 1451 and the IEC 61499 standards. A semantic communication layer connects transducer devices to the digital representation, achieving a semantic level of interoperability. This communication layer adds semantics to the communication process, allowing the development of an interoperable DT based on the IEEE 1451 standards. The DT presented reaches the syntactic and semantic levels of interoperability, allowing the monitoring and visualisation of a prototype system.

Funder

INDTECH4.0

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital twin (DT) and extended reality (XR) for building energy management;Energy and Buildings;2024-11

2. Challenges and Innovations in Digital Twin Creation;Advances in Medical Technologies and Clinical Practice;2024-06-28

3. Acoustic Communication on Metallic Structures: Implementation and Results;2024 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0 & IoT);2024-05-29

4. Earthquake Detection System using IEC 61499 & IEEE 1451 Standards;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

5. Advanced Smart Sensing Node with Acoustic-Based Connectivity for Spot Welding in the Automotive Industry;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3