Identifying Reservoir-Induced Hydrological Alterations in the Upper Yangtze River Basin through Statistical and Modeling Approaches

Author:

Liu Hanqi12,Wang Tingting1,Feng Yao1,Liu Fa1,Wang Ning3,Wang Hong1,Liu Wenbin1ORCID,Sun Fubao12

Affiliation:

1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

3. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

Abstract

Elucidating the impact of reservoir operation on hydrological signatures is crucial for the effective management of large rivers under the changing climate. This study first revised the reservoir operation scheme in the Soil and Water Assessment Tool (SWAT) model to improve its description of actual operation laws of reservoirs in the upper Yangtze River basin (UYRB). Then, we identified the reservoir-induced hydrological alteration through a hydrological index method driven by observed and simulated daily streamflow from 1960 to 2017. The results revealed the superiority of the revised reservoir algorithm in the SWAT model in simulating streamflow and floods at Cuntan and Yichang stations with the Nash-Sutcliffe efficiency (NSE) coefficient and the Kling-Gupta efficiency (KGE) coefficient improved from 0.01 to 0.08 and 0.01 to 0.05, respectively. Relative to the baseline period (1960–2002), the hydrological signatures in the impact period (2003–2017) changed substantially after 2003. Reservoirs induced a remarkable increase of 27.76% and 55.97% in streamflow from January to March, accompanied by a notable decrease of 6.95% and 20.92% in streamflow from September to October after 2003 at Cuntan and Yichang stations, respectively. Meanwhile, the annual streamflow range contracted, and the flow became more stable with a reduced variation in daily streamflow, extremely low flow spell duration, and extremely high flow spell duration. Consequently, our results improved the quantitative understanding of reservoir-induced alteration and informed the management and planning of reservoir construction in the UYRB under climate change.

Funder

Program for the “Kezhen-Bingwei” Youth Talents

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences

Key Programs of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3