Technological and Economic Optimization of Wheat Straw Black Liquor Decolorization by Activated Carbon

Author:

Suditu Gabriel Dan1ORCID,Drăgoi Elena Niculina12ORCID,Puițel Adrian Cătălin1,Nechita Mircea Teodor1ORCID

Affiliation:

1. “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bld. D Mangeron, No 73, 700050 Iasi, Romania

2. Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University, Bld. D Mangeron, No 27, 700050 Iasi, Romania

Abstract

Wheat straws are a globally abundant agro-waste that may play a critical role in the global transition from single-use plastics to green materials as an inexpensive and renewable raw material. Vast amounts of wastewater are produced during the technological process of wheat straw-cellulose/hemicellulose conversion. In this context, this work focuses on wastewater decolorization via activated carbon adsorption. A set of carefully planned experiments enabled the identification of a model that described the relationship between the system’s outputs and parameters. While process optimization is frequently connected with identifying process parameters that improve efficiency, this work employed a multi-objective optimization approach from both a technological and economic aspect. Nondominated sorting genetic algorithm versions II and III—NSGA-II and NSGA-III algorithms—were applied. As objectives, maximum efficiency and minimum cost per experiment were followed in different scenarios using pseudoweights and trade-off metrics. When optimizing only the efficiency, the results indicated a 95.54% decolorization yield, costing 0.1228 Euro/experiment, and when considering both the efficiency and cost, different solutions were obtained. The lowest cost was 0.0619, with a 74.42% decolorization. These findings indicate that incorporating an economic perspective into the optimization procedure can improve cost estimation and facilitate managerial decision-making.

Funder

Program 4: Fundamental and Frontier Research—Exploratory Research Projects

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3