On the Asymptotic Capacity of Information-Theoretic Privacy-Preserving Epidemiological Data Collection

Author:

Cheng Jiale1ORCID,Liu Nan1ORCID,Kang Wei2

Affiliation:

1. National Mobile Communications Research Laboratory, Southeast University, Nanjing 211189, China

2. School of Information Science and Engineering, Southeast University, Nanjing 211189, China

Abstract

The paradigm-shifting developments of cryptography and information theory have focused on the privacy of data-sharing systems, such as epidemiological studies, where agencies are collecting far more personal data than they need, causing intrusions on patients’ privacy. To study the capability of the data collection while protecting privacy from an information theory perspective, we formulate a new distributed multiparty computation problem called privacy-preserving epidemiological data collection. In our setting, a data collector requires a linear combination of K users’ data through a storage system consisting of N servers. Privacy needs to be protected when the users, servers, and data collector do not trust each other. For the users, any data are required to be protected from up to E colluding servers; for the servers, any more information than the desired linear combination cannot be leaked to the data collector; and for the data collector, any single server can not know anything about the coefficients of the linear combination. Our goal is to find the optimal collection rate, which is defined as the ratio of the size of the user’s message to the total size of downloads from N servers to the data collector. For achievability, we propose an asymptotic capacity-achieving scheme when E<N−1, by applying the cross-subspace alignment method to our construction; for the converse, we proved an upper bound of the asymptotic rate for all achievable schemes when E<N−1. Additionally, we show that a positive asymptotic capacity is not possible when E≥N−1. The results of the achievability and converse meet when the number of users goes to infinity, yielding the asymptotic capacity. Our work broadens current researches on data privacy in information theory and gives the best achievable asymptotic performance that any epidemiological data collector can obtain.

Funder

National Natural Science Foundation of China

Research Fund of National Mobile Communications Research Laboratory, Southeast University

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3