CGA-MGAN: Metric GAN Based on Convolution-Augmented Gated Attention for Speech Enhancement

Author:

Chen Haozhe123ORCID,Zhang Xiaojuan12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

In recent years, neural networks based on attention mechanisms have seen increasingly use in speech recognition, separation, and enhancement, as well as other fields. In particular, the convolution-augmented transformer has performed well, as it can combine the advantages of convolution and self-attention. Recently, the gated attention unit (GAU) was proposed. Compared with traditional multi-head self-attention, approaches with GAU are effective and computationally efficient. In this CGA-MGAN: MetricGAN based on Convolution-augmented Gated Attention for Speech Enhancement, we propose a network for speech enhancement called CGA-MGAN, a kind of MetricGAN based on convolution-augmented gated attention. CGA-MGAN captures local and global correlations in speech signals at the same time by fusing convolution and gated attention units. Experiments on Voice Bank + DEMAND show that our proposed CGA-MGAN model achieves excellent performance (3.47 PESQ, 0.96 STOI, and 11.09 dB SSNR) with a relatively small model size (1.14 M).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference43 articles.

1. Supervised speech separation based on deep learning: An overview;Wang;IEEE/ACM Trans. Audio Speech Lang. Process.,2018

2. Atmaja, B.T., Farid, M.N., and Arifianto, D. (2016). Journal of Physics: Conference Series, IOP Publishing.

3. Hearing loss, speech, and hearing aids;Tasell;J. Speech Lang. Hear. Res.,1993

4. Spectral subtraction based on two-stage spectral estimation and modified cepstrum thresholding;Wang;Appl. Acoust.,2013

5. Speech enhancement with an adaptive Wiener filter;Dessouky;Int. J. Speech Technol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3