Abstract
The first nuclear excited state in 229Th possesses the lowest excitation energy of all currently known nuclear levels. The energy difference between the ground- and first-excited (isomeric) state (denoted with 229mTh) amounts only to ≈8.2 eV (≈151.2 nm), which results in several interesting consequences: Since the excitation energy is in the same energy range as the binding energy of valence electrons, the lifetime of 229mTh is strongly influenced by the electronic structure of the Th atom or ion. Furthermore, it is possible to potentially excite the isomeric state in 229Th with laser radiation, which led to the proposal of a nuclear clock that could be used to search for new physics beyond the standard model. In this article, we will focus on recent technical developments in our group that will help to better understand the decay mechanisms of 229mTh, focusing primarily on measuring the radiative lifetime of the isomeric state.
Funder
European Research Council
Subject
Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献