Abstract
The energy levels arising from the electronic orbital 5p−4f crossing between the ground 5p24f and excited 5p4f2 configurations in the Nd9+ ion are investigated by using high-accuracy relativistic ab initio calculations. The accurate atomic data of the lifetime, gJ factor, electric quadrupole moment, and hyperfine structure of the magnetic dipole are also presented. The long-lived states that are suitable for making narrow-linewidth (milli-Hz) clock lines are found. Dominant systematics caused by stray electromagnetic interactions in an experiment and the coefficients of the relativistic sensitivityto variation of the fine-structure constant α and of the Lorentz invariance violation are evaluated, thus validating that the Nd9+ ion can be a new candidate for high-resolution spectroscopy and precision fundamental studies for probing new physics beyond the Standard Model.
Funder
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences
NKRD Program of China
Subject
Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献