Abstract
Since its initial development in the 1970s by Phil Burke and his collaborators, the R-matrix theory and associated computer codes have become the method of choice for the calculation of accurate data for general electron–atom/ion/molecule collision and photoionization processes. The use of a non-orthogonal set of orbitals based on B-splines, now called the B-spline R-matrix (BSR) approach, was pioneered by Zatsarinny. It has considerably extended the flexibility of the approach and improved particularly the treatment of complex many-electron atomic and ionic targets, for which accurate data are needed in many modelling applications for processes involving low-temperature plasmas. Both the original R-matrix approach and the BSR method have been extended to the interaction of short, intense electromagnetic (EM) radiation with atoms and molecules. Here, we provide an overview of the theoretical tools that were required to facilitate the extension of the theory to the time domain. As an example of a practical application, we show results for two-photon ionization of argon by intense short-pulse extreme ultraviolet radiation.
Funder
National Science Foundation
Subject
Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献