Abstract
Double photoionization events provide a direct evaluation of electron correlation. The recent focus on few-electron targets continues to reveal the consequences of electron correlation for targets that possess several electrons. We consider the double photoionization of the 2p2 valence electrons of atomic carbon and focus on the first energetically accessible final-state symmetries that originate from coupling the active electrons in 3P configurations, which are doubly ionized by a single photon. Comparison of this process in carbon with neon provides an analogous case for the resulting final-state symmetries within the framework where the ejected electrons are influenced by the remaining bound electrons in a frozen-core approximation. Choosing this symmetry allows for comparison with previous theoretical results for total and energy sharing cross-sections of carbon. Fully differential cross-sections for both carbon and neon are also compared.
Funder
National Science Foundation
Subject
Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics