The Dissolution Mechanism of Low-Molecular-Weight Organic Acids on the Sillimanite

Author:

Zhang Chenyang1ORCID,Yu Yaling1,Zhong Mingfeng2,Zhuang Jieyi1,Yang Huan1ORCID,Lin Shaomin13,Zhang Zhijie2,Wu Yunying4

Affiliation:

1. School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China

2. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China

3. Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521041, China

4. Guangdong Chaoshan Institute of Higher Education and Technology, Chaozhou 521041, China

Abstract

The interaction between low-molecular-weight organic acids (LMWOAs) and minerals in nature has been widely studied; however, limited research has been conducted on the dissolution mechanism of sillimanite in the presence of different organic acids. In this study, the interaction between the sillimanite sample and LMWOAs (citric acid, oxalic acid, and citric/oxalic mixture) at the same pH was investigated. The dissolution rate of Si and Al was high during the initial reaction time, then slowed down in the presence of LMWOAs. The dissolution data for Si and Al from sillimanite in the LMWOAs fit well with the first-order equation (Ct = a(1 − exp(−kt))) (R2 > 0.991). The dissolution process of sillimanite in the organic acids was controlled by the surface chemical reaction step. The dissolution concentration of Si in aqueous citric acid was higher than that in oxalic acid. In contrast, the dissolution concentration of Al in oxalic acid was more than that in citric acid. The maximum concentrations of Si and Al in the presence of composite organic acids were 1754 μmol/L and 3904 μmol/L. The sillimanite before and after treatment with LMWOAs were studied using X-ray diffraction (XRD) and scan electron microscopy (SEM). These results are explained by the characterization of the sillimanite. Under the single acid solution, the (210) crystal plane with a high areal density of Al in sillimanite was easily dissolved by the oxalic acid, while the (120) in sillimanite with a high areal density of Si was more easily dissolved by citric acid. In the composite organic acids, the Si-O bond and Al-O bond in sillimanite were attacked alternately, leading to the formation of some deeper corrosion pits on the surface of sillimanite. The results are of interest in the dissolution mechanisms of sillimanite in the low-molecular-weight organic acids and the environmentally friendly activation of sillimanite.

Funder

Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Scientific Research Project of the Department of Education of Guangdong Province

Chaozhou Science and Technology Planning Project

University-enterprise Collaborative Innovation Center for Big Health Industry

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3