Bismuth-Nanoparticles-Embedded Porous Carbon Derived from Seed Husks as High-Performance for Anode Energy Electrode

Author:

Rehman Wasif ur1,Farooq Umar2,Yousaf Muhammad Zain3ORCID,Altalbe Ali45

Affiliation:

1. Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Opto-Electronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China

2. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321017, China

3. School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, China

4. Department of Computer Science, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

5. Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

In energy application technology, the anode part of the electrode is typically composed of carbon-coated materials that exhibit excellent electrochemical performance. The carbon-coated electrodes facilitate electrochemical reactions involving the fuel and the oxidant. Energy electrodes are used in stationary power plants to generate electricity for the grid. These large-scale installations are known as distributed generation systems and contribute to grid stability and reliability. Understanding the practical applications of energy materials remains a significant hurdle in the way of commercialization. An anode electrode has one key limitation, specifically with alloy-type candidates, as they tend to exhibit rapid capacity degradation during cycling due to volume expansion. Herein, biomass-derived carbon from sunflowers (seeds husks) via pyrolysis and then bismuth nanoparticles are treated with carbon via a simple wet-chemical method. The electrode Bi@C offers several structural advantages, such as high capacity, good cycling stability, and exceptional capability at the current rate of 500 mA g−1, delivering a capacity of 731.8 mAh g−1 for 200 cycles. The biomass-derived carbon coating protects the bismuth nanoparticles and contributes to enhanced electronic conductivity. Additionally, we anticipate the use of low-cost biomass with hybrid composition has the potential to foster environment-friendly practices in the development of next-generation advanced fuel cell technology.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3