Study on Lifetime Performance Evaluation of a Precast Prestressed Concrete Frame in Chloride Environments

Author:

Yang Jun12ORCID,Yuan Zhaoming1,Liu Jie3ORCID,Yu Shuqi2

Affiliation:

1. Jiangsu Key Laboratory of Structure Engineering, Suzhou University of Science and Technology, Suzhou 215011, China

2. School of Civil Engineering, Southeast University, Nanjing 211189, China

3. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

This study established a comprehensive framework for evaluating the lifetime performance of precast prestressed concrete frames exposed to chloride environments. The proposed analytical framework enabled a scientifically grounded and rational assessment of both the service life and residual load-carrying capacity of precast prestressed concrete frames in chloride environments. It further served as the foundational basis for making informed decisions regarding the repair and maintenance of pertinent structures. Based on Fick’s second law, this evaluation framework established the probability distribution of the corrosion initiation time and cracking time of reinforced concrete structures due to corrosion expansion in a chloride environment. Additionally, based on the fragility analysis model and results of a precast prestressed concrete frame in a chloride environment, a practical method for evaluating the time-varying seismic performance of the precast structure considering the influence of corrosion was proposed. Furthermore, by employing the path probability model and reliability theory, time-varying reliability models were proposed to predict the three limit states of the precast prestressed concrete frame. According to the analysis results of a four-story planar frame, it could be seen that the corrosion initiation time and normal service limit state were highly sensitive to the chloride ion diffusion coefficient of the composite layer in precast concrete structures. Compared to cast-in-place structures, the presence of a composite layer in precast concrete structures could lead to more severe degradation of the time-varying seismic performance of the precast prestressed concrete frame.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3