In Situ Observation of Bubbles and the Effect of Ultrasonic Vibration on Bubble Behavior in EDM

Author:

Wang Chenxue1,Sasaki Tomohiro2,Hirao Atsutoshi3

Affiliation:

1. Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

2. Faculty of Engineering, Niigata University, Niigata 950-2181, Japan

3. Faculty of Education, Niigata University, Niigata 950-2181, Japan

Abstract

Accumulation and concentration of debris in deep hole electrical discharge machining (EDM) significantly hinder its machining efficiency and accuracy. It is believed that the movement of bubbles associated with the discharge gap flow field play a pivotal role in debris removal and influence the discharge conditions. Ultrasonic vibration (USV) of the electrode is thought to be an effective method for improving EDM-generated bubbles and debris exclusion. In this study, we first elucidated the behavior of bubbles during EDM of holes with varying aspect ratios. Subsequently, USV was introduced to EDM. The behavior of dielectric fluid flow under the influence of ultrasonic vibration was analyzed using computational fluid dynamics (CFD), which revealed time-varying changes in discharge gap flow pressure and velocity. The velocity of the dielectric flow field near the electrode’s side face was found to reach a maximum of approximately 15.2 m/s, greatly facilitating debris removal. High-speed camera observations revealed that bubbles were dispersed within the side gap, with most of them adhering to the electrode’s wall. Furthermore, the bubbles exhibited a tendency to continuously break up and coalesce near the hole’s outlet before escaping in the USV-assisted EDM. These observed characteristics of bubble behavior under the influence of USV are expected to significantly enhance debris removal and promote efficient dielectric exchange.

Funder

Ministry of Education, Culture, Sports, Science, and Technology, Japan

Japan Science and Technology Agency, JST SPRING

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3