Hydrogen Diffusion in Nickel Superalloys: Electrochemical Permeation Study and Computational AI Predictive Modeling

Author:

Román-Sedano Alfonso Monzamodeth1,Campillo Bernardo12,Villalobos Julio C.3ORCID,Castillo Fermín2,Flores Osvaldo12

Affiliation:

1. Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico

2. Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico

3. Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico, No. 1500, Col. Lomas de Santiaguito, Morelia CP 58120, Mexico

Abstract

Ni-based superalloys are materials utilized in high-performance services that demand excellent corrosion resistance and mechanical properties. Its usages can include fuel storage, gas turbines, petrochemistry, and nuclear reactor components, among others. On the other hand, hydrogen (H), in contact with metallic materials, can cause a phenomenon known as hydrogen embrittlement (HE), and its study related to the superalloys is fundamental. This is related to the analysis of the solubility, diffusivity, and permeability of H and its interaction with the bulk, second-phase particles, grain boundaries, precipitates, and dislocation networks. The aim of this work was mainly to study the effect of chromium (Cr) content on H diffusivity in Ni-based superalloys; additionally, the development of predictive models using artificial intelligence. For this purpose, the permeability test was employed based on the double cell experiment proposed by Devanathan–Stachurski, obtaining the effective diffusion coefficient (Deff), steady-state flux (Jss), and the trap density (NT) for the commercial and experimentally designed and manufactured Ni-based superalloys. The material was characterized with energy-dispersed X-ray spectroscopy (EDS), atomic absorption, CHNS/O chemical analysis, X-ray diffraction (XRD), brightfield optical microscopy (OM), and scanning electron microscopy (SEM). On the other hand, predictive models were developed employing artificial neural networks (ANNs) using experimental results as a database. Furthermore, the relative importance of the main parameters related to the H diffusion was calculated. The Deff, Jss, and NT achieved showed relatively higher values considering those reported for Ni alloys and were found in the following orders of magnitude: [1 × 10−8, 1 × 10−11 m2/s], [1 × 10−5, 9 × 10−7 mol/cm2s], and [7 × 1025 traps/m3], respectively. Regarding the predictive models, linear correlation coefficients of 0.96 and 0.80 were reached, corresponding to the Deff and Jss. Due to the results obtained, it was suitable to dismiss the effect of Cr in solid solution on the H diffusion. Finally, the predictive models developed can be considered for the estimation of Deff and Jss as functions of the characterized features.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3