Machine Learning Prediction of the Redox Activity of Quinones

Author:

Kichev Ilia12,Borislavov Lyuben1ORCID,Tadjer Alia2ORCID,Stoyanova Radostina1ORCID

Affiliation:

1. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

2. Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria

Abstract

The redox properties of quinones underlie their unique characteristics as organic battery components that outperform the conventional inorganic ones. Furthermore, these redox properties could be precisely tuned by using different substituent groups. Machine learning and statistics, on the other hand, have proven to be very powerful approaches for the efficient in silico design of novel materials. Herein, we demonstrated the machine learning approach for the prediction of the redox activity of quinones that potentially can serve as organic battery components. For the needs of the present study, a database of small quinone-derived molecules was created. A large number of quantum chemical and chemometric descriptors were generated for each molecule and, subsequently, different statistical approaches were applied to select the descriptors that most prominently characterized the relationship between the structure and the redox potential. Various machine learning methods for the screening of prospective organic battery electrode materials were deployed to select the most trustworthy strategy for the machine learning-aided design of organic redox materials. It was found that Ridge regression models perform better than Regression decision trees and Decision tree-based ensemble algorithms.

Funder

CARIM-VIHREN

European Twinning on Materials Chemistry Enabling Clean Technologies

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3