Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review

Author:

Zhou Yang1,Zhang Keke1,Chen Zhaoyang1,Zhang Haichang1

Affiliation:

1. Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, China

Abstract

In the last two decades, organic field-effect transistors (OFETs) have garnered increasing attention from the scientific and industrial communities. The performance of OFETs can be evaluated based on three factors: the charge transport mobility (μ), threshold voltage (Vth), and current on/off ratio (Ion/off). To enhance μ, numerous studies have concentrated on optimizing charge transport within the semiconductor layer. These efforts include: (i) extending π-conjugation, enhancing molecular planarity, and optimizing donor–acceptor structures to improve charge transport within individual molecules; and (ii) promoting strong aggregation, achieving well-ordered structures, and reducing molecular distances to enhance charge transport between molecules. In order to obtain a high charge transport mobility, the charge injection from the electrodes into the semiconductor layer is also important. Since a suitable frontier molecular orbitals’ level could align with the work function of the electrodes, in turn forming an Ohmic contact at the interface. OFETs are classified into p-type (hole transport), n-type (electron transport), and ambipolar-type (both hole and electron transport) based on their charge transport characteristics. As of now, the majority of reported conjugated materials are of the p-type semiconductor category, with research on n-type or ambipolar conjugated materials lagging significantly behind. This review introduces the molecular design concept for enhancing charge carrier mobility, addressing both within the semiconductor layer and charge injection aspects. Additionally, the process of designing or converting the semiconductor type is summarized. Lastly, this review discusses potential trends in evolution and challenges and provides an outlook; the ultimate objective is to outline a theoretical framework for designing high-performance organic semiconductors that can advance the development of OFET applications.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3