Affiliation:
1. Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, China
Abstract
In the last two decades, organic field-effect transistors (OFETs) have garnered increasing attention from the scientific and industrial communities. The performance of OFETs can be evaluated based on three factors: the charge transport mobility (μ), threshold voltage (Vth), and current on/off ratio (Ion/off). To enhance μ, numerous studies have concentrated on optimizing charge transport within the semiconductor layer. These efforts include: (i) extending π-conjugation, enhancing molecular planarity, and optimizing donor–acceptor structures to improve charge transport within individual molecules; and (ii) promoting strong aggregation, achieving well-ordered structures, and reducing molecular distances to enhance charge transport between molecules. In order to obtain a high charge transport mobility, the charge injection from the electrodes into the semiconductor layer is also important. Since a suitable frontier molecular orbitals’ level could align with the work function of the electrodes, in turn forming an Ohmic contact at the interface. OFETs are classified into p-type (hole transport), n-type (electron transport), and ambipolar-type (both hole and electron transport) based on their charge transport characteristics. As of now, the majority of reported conjugated materials are of the p-type semiconductor category, with research on n-type or ambipolar conjugated materials lagging significantly behind. This review introduces the molecular design concept for enhancing charge carrier mobility, addressing both within the semiconductor layer and charge injection aspects. Additionally, the process of designing or converting the semiconductor type is summarized. Lastly, this review discusses potential trends in evolution and challenges and provides an outlook; the ultimate objective is to outline a theoretical framework for designing high-performance organic semiconductors that can advance the development of OFET applications.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献