A New Self-Activated Micropumping Mechanism Capable of Continuous-Flow and Real-Time PCR Amplification Inside 3D Spiral Microreactor

Author:

Wang Kangning,Wu DiORCID,Wu WenmingORCID

Abstract

A self-activated micropump which is capable of stable velocity transport for a liquid to flow a given distance inside a 3D microchannel has been a dream of microfluidic scientists for a long time. A new self-activated pumping mechanism has been proposed in this paper. It is different from the authors’ previous research which relied on the fluid resistance of a quartz capillary tube or end-blocked gas-permeable silicone or a polydimethylsiloxane (PDMS) wall to automate the flow. In this research, an end-open stretched Teflon tube was utilized for passive transport for the first time. A new fluid transmission mode was adopted with the assistance of a cheaper easily accessible oil mixture to achieve stable continuous flow. Finally, this novel micropump has been applied to real-time continuous-flow polymerase chain reactions (PCRs), with an amplification efficiency similar to that of a commercial PCR cycler instrument.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3