Abstract
Rare-earth ion-doped potassium yttrium double tungstate, RE:KY(WO4)2, is a promising candidate for small, power-efficient, on-chip lasers and amplifiers. Thin KY(WO4)2-on-glass layers with thicknesses ranging between 0.9 and 1.6 μm are required to realize on-chip lasers based on high refractive index contrast waveguides operating between 1.55 and 3.00 µm. The crystalline nature of KY(WO4)2 makes the growth of thin, defect-free layers on amorphous glass substrates impossible. Heterogeneous integration is one of the promising approaches to achieve thin KY(WO4)2-on-glass layers. In this process, crystal samples, with a thickness of 1 mm, are bonded onto a glass substrate and thinned down with an extensive lapping and polishing procedure to the desired final thickness. In this study, a lapping and polishing process for KY(WO4)2 was developed toward the realization of integrated active optical devices in this material.
Funder
H2020 European Research Council
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献