Predicting NOx Distribution in a Micro Rich–Quench–Lean Combustor Using a Variational Autoencoder

Author:

Yan Peiliang1,Fan Weijun1,Zhang Rongchun12

Affiliation:

1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China

2. Research Institute of Aero-Engine, Beihang University, Beijing 100191, China

Abstract

Micro gas turbines are widely used in distributed power generation systems. However, the combustion of gas turbine combustors produces a large amount of nitrogen oxides (NOx), which pollute the environment and endanger human life. To reduce environmental pollution, low-emission combustors have been developed. In recent years, there has been an increasing focus on the use of low-heat-value gas fuels, and it is necessary to study the NOx emissions from low heat value gas fuel combustors. Data-driven deep learning methods have been used in many fields in recent years. In this study, a variational autoencoder was introduced for the prediction of NOx production inside the combustor. The combustor used was a micro rich–quench–lean combustor designed by the research group using coal bed gas as a fuel. The internal NO distribution contour was obtained as the dataset using simulation methods, with a size of 60 images. The model architecture parameters were obtained through hyperparameter exploration using the grid search method. The model accurately predicted the distribution of NO inside the combustor. The method can be applied in the prediction of a wider range of parameters and offers a new way of designing combustors for the power industry.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3