The Spatio-Temporal Evolution of the Soil Conservation Function of Ecosystems in the North–South Transition Zone in China: A Case Study of the Qinling-Daba Mountains

Author:

Li ZhengyangORCID,Lu YafengORCID,Wang Yukuan,Liu Jia

Abstract

Maintaining and improving the soil conservation function of an ecosystem is of positive significance to the sustainable and stable development of that ecosystem. We used the RUSLE model to evaluate the soil conservation function of the Qinling-Daba Mountains from 1982, 1995, 2005, and 2015 in order to analyze the spatio-temporal evolution characteristics of soil conservation. Our conclusions are as follows: (1) During the study period, the amount of average actual soil erosion in the Qinling-Daba Mountains was 955.39 × 108 t, the amount of actual soil erosion fluctuated greatly from year after year, there were obvious spatial aggregation and temporal and spatial transfer phenomena, and there was serious soil nutrient loss in the east. (2) From 1982 to 2015, soil conservation in the Qinling-Daba Mountains increased by 27.75 × 108 t during fluctuations. The soil conservation was negatively correlated with elevation and slope, and was positively correlated with vegetation coverage. (3) The average soil conservation of forest ecosystems and farmland ecosystems accounts for 78.11% of the total soil conservation, but there are differences in the ways in which to achieve soil conservation function. The order for soil conservation function of different vegetation types is crops > shrub > broad-leaved forest > coniferous forest > grass > meadow > grassland > coniferous and broad-leaved mixed forest > alpine plant > swamp. (4) The average retention of N, P and K elements in soil were 75.57 × 104 t, 25.35 × 104 t and 737.28 × 104 t, respectively. The soil elements had the consistency of spatial difference in spatial distribution and were time scaled. The soil nutrient loss in the eastern region is serious. Shrubs, broadleaf forests and crops have the greatest effect on soil nutrient retention. Alpine plants retain the greatest amount of soil nutrients per unit area. Therefore, the establishment of reasonable soil conservation strategies and scientific vegetation interplanting measures will help to enhance the soil conservation function of the Qinling-Daba Mountains ecosystem and improve the ecosystem production capacity.

Funder

National Natural Science Foundation of China

strategic priority research program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference54 articles.

1. The Effect of Soil Erosion on the Ecosystem;Wei;Res. Soil Water Conserv.,2006

2. Soil conservation and ecosystem services

3. Hierarchical priority setting for restoration in a watershed in NE Spain, based on assessments of soil erosion and ecosystem services

4. Environmental and Economic Costs of Soil Erosion and Conservation Benefits

5. Spatial analysis on soil erosion of Lancang River Watershed in Yunnan Province under the support of GIS;Yao;Geogr. Res.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3