Abstract
Spectrum demand has increased with the rapid growth of wireless devices and wireless service usage. The rapid development of 5G smart cities and the industrial Internet of Things makes the problem of spectrum resource shortage and increased energy consumption even more severe. To address the issues of high energy consumption for spectrum sensing and low user access rate in the cognitive radio networks (CRN) model powered entirely by energy harvesting, we propose a novel energy harvesting (EH)-distributed cooperative spectrum sensing (DCSS) architecture that allows SUs to acquire from the surrounding environment and radio frequency (RF) signals energy, and an improved distributed cooperative spectrum sensing scheme based on energy-correlation is proposed. First, we formulate an optimization problem to select a leader for each channel; then formulate another optimization problem to select the corresponding cooperative secondary users (SUs). Each channel has a fixed SUs cluster in each time slot to sense the main user state, which can reduce the energy consumption of SUs sensing and can reduce the sensing time, and the remaining time can be used for data transmission to improve throughput, and finally achieve the purpose of improving energy efficiency. Simulation results show that our proposed scheme significantly outperforms the centralized scheme in terms of SUs access capability and energy efficiency.
Funder
Funding: This research was funded by Xinjiang Uygur Autonomous Region Major Science and Technology Special Fund Project.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献