Effect of High-Rate Cycle Aging and Over-Discharge on NCM811 (LiNi0.8Co0.1Mn0.1O2) Batteries

Author:

Yin Tao,Jia Longzhou,Li Xichao,Zheng Lili,Dai ZuoqiangORCID

Abstract

Inconsistencies in a monomer battery pack can lead to the over-discharge of a single battery. Although deep over-discharge can be avoided by optimizing the battery control system, slight over-discharge still often occurs in the battery pack. The aging behavior of cylindrical NCM811 batteries under high-rate aging and over-discharge was studied. By setting the end-of-discharge of 1 V, the battery capacity rapidly decayed after 130 cycles. Additionally, the temperature sharply increased in the over-discharge stage. The micro short-circuit was found by the discharge voltage curve and impedance spectrum. Batteries with 100%, 79.6% and 50.9% SOH (state of health = Q_now/Q_new × 100%) as a result of high-rate aging and over-discharging were subjected to thermal testing in an adiabatic environment. The battery without high-rate aging and over-discharge did not experience thermal runaway. However, severe thermal runaway occurred in the 79.6% and 50.9% SOH batteries. Regarding the cyclic aging of the 50.9% SOH battery, the fusion temperature of the separator decreased by 22.3 °C, indicating a substantial degradation of the separator and thus reducing battery safety. Moreover, the results of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses revealed that the particles of the positive material were broken and detached, and that large-area cracks and delamination had formed on the negative material. Furthermore, Ni deposition and the uneven deposition of P and F on the negative surface were observed, which increased the risk of short-circuit in the battery. Positive and negative materials were attached on both sides of the separator, which reduced the effective area of ionic transportation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3