Feasibility Investigation of Hydrogen Refuelling Infrastructure for Heavy-Duty Vehicles in Canada

Author:

Yaïci WahibaORCID,Longo MichelaORCID

Abstract

A potentially viable solution to the problem of greenhouse gas emissions by vehicles in the transportation sector is the deployment of hydrogen as alternative fuel. A limitation to the diffusion of the hydrogen-fuelled vehicles option is the intricate refuelling stations that vehicles will require. This study examines the practical use of hydrogen fuel within the internal combustion engine (ICE)-powered long-haul, heavy-duty trucking vehicles. Specifically, it appraises the techno-economic feasibility of constructing a network of long-haul truck refuelling stations using hydrogen fuel, across Canada. Hydrogen fuel is chosen as an option for this study due to its low carbon emissions rate compared to diesel. This study also explores various operational methods, including variable technology integration levels and truck traffic flows, truck and pipeline delivery of hydrogen to stations, and the possibility of producing hydrogen onsite. The proposed models created for this work suggest important parameters for economic development, such as capital costs for station construction, the selling price of fuel, and the total investment cost for the infrastructure of a nation-wide refuelling station. Results showed that the selling price of hydrogen gas pipeline delivery option is more economically stable. Specifically, it was found that at 100% technology integration, the range in selling prices was between 8.3 and 25.1 CAD$/kg. Alternatively, at 10% technology integration, the range was from 12.7 to 34.1 CAD$/kg. Moreover, liquid hydrogen, which is delivered by trucks, generally had the highest selling price due to its very prohibitive storage costs. However, truck-delivered hydrogen stations provided the lowest total investment cost; the highest is shown by pipe-delivered hydrogen and onsite hydrogen production processes using high technology integration methods. It is worth mentioning that once hydrogen technology is more developed and deployed, the refuelling infrastructure cost is likely to decrease considerably. It is expected that the techno-economic model developed in this work will be useful to design and optimize new and more efficient hydrogen refuelling stations for any ICE vehicles or fuel cell vehicles.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference49 articles.

1. Hydrogen the future transportation fuel: From production to applications

2. Automotive hydrogen fuelling stations: An international review

3. The Paris Agreement | UNFCCChttps://unfccc.int/sites/default/files/english_paris_agreement.pdf

4. Government of Canada, The Paris Agreementhttps://www.canada.ca/en/environment-climate-change/services/climate-change/paris-agreement.html

5. The Future of Trucks: Implications for Energy and the Environment,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3