Synthesis and Characterization of Gadolinium-Doped Zirconia as a Potential Electrolyte for Solid Oxide Fuel Cells

Author:

Yilmaz SerdarORCID,Cobaner Senel,Yalaz Emine,Amini Horri BahmanORCID

Abstract

Zirconia-based composites with high thermochemical stability and electrochemical activity are the most promising solid electrolytes for manufacturing solid oxide fuel cells (SOFCs). In the present work, nanocrystalline composite powders of gadolinium-doped zirconia (GDZ: Gd2xZr2(1−x)O4−x) with various doping fractions (0.01 ≤ x ≤ 0.16) were synthesized by the Pechini method and applied for the fabrication of several electrolyte pellets to evaluate their physicochemical properties, sinterability, and conductivity. The X-ray diffraction (XRD) patterns and the thermogravimetry/differential thermal analysis (TGA/DTA) of the synthesized powders confirmed the successful formation of nanocrystalline GDZ in the tetragonal phase with complete substitution of gadolinium phase into the zirconia (ZrO2) lattice. The synthesized gadolinium zirconate powders were then shaped into pellet forms using the tape casting method, followed by sintering at 1300 °C (for 2.5 h). The microstructural analysis of the electrolyte pellets showed suitable grain boundary welding at the surface with an acceptable grain growth at the bulk of the T-phase GDZ samples. The impedance measurements indicated that the T-phase GDZ-8 could provide a comparably higher ionic conductivity (with 7.23 × 10−2 S/cm in the air at 800 °C) than the other dopant fractions. The results of this work can help better understand the characteristics and electrochemical performance of the T-phase gadolinium zirconate as a potential electrolyte for the fabrication of SOFCs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3