Implementation of a Local Time Stepping Algorithm and Its Acceleration Effect on Two-Dimensional Hydrodynamic Models

Author:

Yang Xiyan,An Wenjie,Li Wenda,Zhang Shanghong

Abstract

The engineering applications of two-dimensional (2D) hydrodynamic models are restricted by the enormous number of meshes needed and the overheads of simulation time. The aim of this study is to improve computational efficiency and optimize the balance between the quantity of grids used in and the simulation accuracy of 2D hydrodynamic models. Local mesh refinement and a local time stepping (LTS) strategy were used to address this aim. The implementation of the LTS algorithm on a 2D shallow-water dynamic model was investigated using the finite volume method on unstructured meshes. The model performance was evaluated using three canonical test cases, which discussed the influential factors and the adaptive conditions of the algorithm. The results of the numerical tests show that the LTS method improved the computational efficiency and fulfilled mass conservation and solution accuracy constraints. Speedup ratios of between 1.3 and 2.1 were obtained. The LTS scheme was used for navigable flow simulation of the river reach between the Three Gorges and Gezhouba Dams. This showed that the LTS scheme is effective for real complex applications and long simulations and can meet the required accuracy. An analysis of the influence of the mesh refinement on the speedup was conducted. Coarse and refined mesh proportions and mesh scales observably affected the acceleration effect of the LTS algorithm. Smaller proportions of refined mesh resulted in higher speedup ratios. Acceleration was the most obvious when mesh scale differences were large. These results provide technical guidelines for reducing computational time for 2D hydrodynamic models on non-uniform unstructured grids.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3