Author:
Dong Zhichao,Kuang Cuiping,Gu Jie,Zou Qingping,Zhang Jiabo,Liu Huixin,Zhu Lei
Abstract
Total maximum allocated load (TMAL) is the maximum sum total of all the pollutant loading a water body can carry without surpassing the water quality criterion, which is dependent on hydrodynamics and water quality conditions. A coupled hydrodynamic and water quality model combined with field observation was used to study pollutant transport and TMAL for water environment management in Qinhuangdao (QHD) sea in the Bohai Sea in northeastern China for the first time. Temporal and spatial variations of the chemical oxygen demand (COD) concentration were investigated based on MIKE suite (Danish Hydraulic Institute, Hørsholm, Denmark). A systematic optimization approach of adjusting the upstream pollutant emission load was used to calculate TMAL derived from the predicted COD concentration. The pollutant emission load, TMAL, and pollutant reduction of Luanhe River were the largest due to the massive runoff, which was identified as the most influential driving factor for water environmental capacity and total carrying capacity of COD. The correlation analysis and Spearman coefficient indicate strong links between TMAL and forcing factors such as runoff, kinetic energy, and pollutant emission load. A comparison of total carrying capacity in 2011 and 2013 confirms that the upstream pollutant control scheme is an effective strategy to improve water quality along the river and coast. Although, the present model results suggest that a monitoring system could provide more efficient total capacity control. The outcome of this study establishes the theoretical foundation for coastal water environment management strategy in this region and worldwide.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献