Transductive Feature Selection Using Clustering-Based Sample Entropy for Temperature Prediction in Weather Forecasting

Author:

Karevan Zahra,Suykens Johan

Abstract

Entropy measures have been a major interest of researchers to measure the information content of a dynamical system. One of the well-known methodologies is sample entropy, which is a model-free approach and can be deployed to measure the information transfer in time series. Sample entropy is based on the conditional entropy where a major concern is the number of past delays in the conditional term. In this study, we deploy a lag-specific conditional entropy to identify the informative past values. Moreover, considering the seasonality structure of data, we propose a clustering-based sample entropy to exploit the temporal information. Clustering-based sample entropy is based on the sample entropy definition while considering the clustering information of the training data and the membership of the test point to the clusters. In this study, we utilize the proposed method for transductive feature selection in black-box weather forecasting and conduct the experiments on minimum and maximum temperature prediction in Brussels for 1–6 days ahead. The results reveal that considering the local structure of the data can improve the feature selection performance. In addition, despite the large reduction in the number of features, the performance is competitive with the case of using all features.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3