Performance Prediction Model of Solid Oxide Fuel Cell System Based on Neural Network Autoregressive with External Input Method

Author:

Cheng Shan-JenORCID,Lin Jing-Kai

Abstract

An accurate performance prediction model for the solid oxide fuel cell (SOFC) system not only contributes to the realization of the operating condition but also plays a role in long-term prediction performance. Accordingly, a research study has been developed to suitably deal with the time-series model and accurately build the performance prediction model of SOFC system based on neural network autoregressive with external input (NNARX) method. The architecture regressor parameters of the NNARX model were efficiently determined using the Taguchi orthogonal array (OA) method for optimal sets. The identified and evaluated optimal parameter levels were used to conduct an analysis of variance (ANOVA) to prove correctness. Moreover, a series of statistics criteria and multi-step prediction were also employed for investigating the uncertainty of the predicted model and solve the overfitting and under fitting problems; further. These criteria were also used to determine the performance of the proposed model architecture. The predicted results of the current study indicated that the developed optimal model level parameters consistently had the least statistics errors and reduced workload of the trial-and-error processes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3