The Function of Arbuscular Mycorrhizal Fungi Associated with Drought Stress Resistance in Native Plants of Arid Desert Ecosystems: A Review

Author:

Madouh Tareq A.1,Quoreshi Ali M.1

Affiliation:

1. Desert Agriculture and Ecosystems Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Kuwait City 13109, Kuwait

Abstract

Drought stress profoundly affects native desert plants’ survival and performance. Among all the abiotic stresses, drought is considered a major constraint that influences the structure and functions of desert ecosystems. Arid desert ecosystems are characterized by prolonged drought, extreme temperatures, high solar radiation, water scarcity, high salinity, scarcity of soil nutrients, and poor soil structure. Such extreme desert environments are the toughest regions on earth, which present enormous challenges in conserving plant survival, growth and reproduction. Despite the predominance of these environmental conditions, native desert plant species that grow in desert environments develop complex adaptation strategies and resistance mechanisms to ameliorate the abiotic and biotic stresses in the extreme environments including changes in biochemical, physiological, and morphological levels. Arbuscular mycorrhizal fungi (AMF) form positive symbiotic associations with a considerable percentage of terrestrial plants as their host, induce distinct impacts on plant growth and protect plants from abiotic stresses. However, it is necessary to advance our understanding of the complex mechanisms associated with AMF-mediated and other dark septate endophytes (DSE)-mediated amelioration of native desert plants’ drought stress resistance and associated biological adjustments such as changes in hormone balance, water and nutrient status, stomatal conductance and osmotic adjustment, antioxidant activity, and photosynthetic activity. This review provides an overview of the relationships of mycorrhiza and fungal endophytes involved in drought stress tolerance, summarizing the current knowledge and presenting possible mechanisms mediated by AMF to stimulate drought tolerance associated with native desert plants. We discuss the research required to fill the gaps and provide suggestions for future research.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference146 articles.

1. Global changes in drought conditions under different levels of warming;Naumann;Geophys. Res. Lett.,2018

2. (2022, July 04). National Drought Mitigation Center. Available online: https://drought.unl.edu/Education/DroughtBasics.aspx.

3. A Simple Method for Simulating Drought Effects on Plants;Marchin;Front. Plant Sci.,2020

4. Droughts, floods, and wildfires;Wuebbles;Climate Science Special Report: Fourth National Climate Assessment,2017

5. Microbial community response to hydration-desiccation cycles in desert soil;Kim;Sci. Rep.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3