A Rigid-Flexible Coupling Dynamic Model for Robotic Manta with Flexible Pectoral Fins

Author:

Qu Yilin12ORCID,Xie Xiao2,Zhang Shucheng34ORCID,Xing Cheng12,Cao Yong12ORCID,Cao Yonghui12,Pan Guang12,Song Baowei12

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

2. Unmanned Vehicle Innovation Center, Ningbo Institute of NPU, Ningbo 315103, China

3. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China

4. MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The manta ray, exemplifying an agile swimming mode identified as the median and paired fin (MPF) mode, inspired the development of underwater robots. Robotic manta typically comprises a central rigid body and flexible pectoral fins. Flexible fins provide excellent maneuverability. However, due to the complexity of material mechanics and hydrodynamics, its dynamics are rarely studied, which is crucial for the advanced control of robotic manta (such as trajectory tracking, obstacle avoidance, etc.). In this paper, we develop a multibody dynamic model for our novel manta robot by introducing a pseudo-rigid body (PRB) model to consider passive deformation in the spanwise direction of the pectoral fins while avoiding intricate modeling. In addressing the rigid-flexible coupling dynamics between flexible fins and the actuation mechanism, we employ a sequential coupling technique commonly used in fluid-structure interaction (FSI) problems. Numerical examples are provided to validate the MPF mode and demonstrate the effectiveness of the dynamic model. We show that our model performs well in the rigid-flexible coupling analysis of the manta robot. In addition to the straight-swimming scenario, we elucidate the viability of tailoring turning gaits through systematic variations in input parameters. Moreover, compared with finite element and CFD methods, the PRB method has high computational efficiency in rigid-flexible coupling problems. Its potential for real-time computation opens up possibilities for future model-based control.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3