Multi-Attention Pyramid Context Network for Infrared Small Ship Detection

Author:

Guo Feng12,Ma Hongbing123ORCID,Li Liangliang4ORCID,Lv Ming12,Jia Zhenhong12

Affiliation:

1. School of Computer Science and Technology, Xinjiang University, Urumqi 830046, China

2. Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830046, China

3. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

4. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

In the realm of maritime target detection, infrared imaging technology has become the predominant modality. Detecting infrared small ships on the sea surface is crucial for national defense and maritime security. However, the challenge of detecting infrared small targets persists, especially in the complex scenes of the sea surface. As a response to this challenge, we propose MAPC-Net, an enhanced algorithm based on an existing network. Unlike conventional approaches, our method focuses on addressing the intricacies of sea surface scenes and the sparse pixel occupancy of small ships. MAPC-Net incorporates a scale attention mechanism into the original network’s multi-scale feature pyramid, enabling the learning of more effective scale feature maps. Additionally, a channel attention mechanism is introduced during the upsampling process to capture relationships between different channels, resulting in superior feature representations. Notably, our proposed Maritime-SIRST dataset, meticulously annotated for infrared small ship detection, is introduced to stimulate advancements in this research domain. Experimental evaluations on the Maritime-SIRST dataset demonstrate the superiority of our algorithm over existing methods. Compared to the original network, our approach achieves a 6.14% increase in mIOU and a 4.41% increase in F1, while maintaining nearly unchanged runtime.

Funder

National Science Foundation of China

Cross-Media Intelligent Technology Project of Beijing National Research Center for Information Science and Technology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3