Affiliation:
1. Navigation College, Dalian Maritime University, Dalian 116026, China
Abstract
Collaborative operations of multiple AUVs have been becoming increasingly popular and efficient in underwater tasks of marine applications. Autonomous navigation capability and cooperative control stability of multiple AUVs are crucial and challenging issues in underwater environments. To address the collaborative problem of path planning for multiple AUVs, this paper proposes an adaptive multi-population particle swarm optimization (AMP-PSO). In AMP-PSO, we design a grouping strategy of multi-population and an exchanging mechanism of particles between groups. We separate particles into one leader population and various follower populations according to their fitness. Firstly, in the grouping strategy, particles within the leader population are updated by both the leader population and follower populations so as to keep global optimization, while particles within the follower population are updated by their own group so as to keep local priority. Secondly, in the exchanging mechanism, particles are exchanged between the leader population and follower populations so as to improve multi-population diversity. To accommodate multi-population characteristics, an adaptive parameter configuration is also included to enhance the global search capability, convergence speed, and complex environment adaptability of AMP-PSO. In numerical experiments, we simulate various scenarios of collaborative path planning of multiple AUVs in an underwater environment. The simulation results convincingly demonstrate that AMP-PSO can obtain feasible and optimal path solutions compared to classic PSO and other improved PSO, which enable multiple AUVs to effectively achieve objectives under the conditions of collision avoidance and navigation constraint.
Funder
National Natural Science Foundation of China
Science and Technology Fund for Distinguished Young Scholars of Dalian
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献