A Fault Diagnosis Method for Marine Engine Cross Working Conditions Based on Transfer Learning

Author:

Wang Longde1,Cao Hui12,Cui Zhichao1ORCID,Ai Zeren1ORCID

Affiliation:

1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China

2. Dalian Maritime University Smart Ship Limited Company, Dalian 116026, China

Abstract

Marine engines confront challenges of varying working conditions and intricate failures. Existing studies have primarily concentrated on fault diagnosis in a single condition, overlooking the adaptability of these methods in diverse working condition. To address the aforementioned issues, we propose a cross working condition fault diagnosis method named the Balanced Adaptation Domain Weighted Adversarial Network (BADWAN). This method combines transfer learning to tackle the challenges of cross working condition diagnosis with limited labels. Specifically tailored for scenarios with incomplete labeling in the target working conditions, we designed an Enhanced Centroid Balance scheme to balance the label space, thereby enhancing the model’s transfer capabilities. Additionally, we designed an Instance Affinity Weighting scheme on the foundation of Class-level Weighting, refining the model to the instance level for effective information interaction. Furthermore, we incorporated the Adaptive Uncertainty Suppression strategy to further boost the model’s classification prowess. Two experimental scenarios were designed to demonstrate the effectiveness of the proposed model using a Wärtsilä9L34DF dual-fuel engine as an experimental subject. The results demonstrate an over 90% diagnostic accuracy in scenarios with complete target working condition labels and 86% accuracy in scenarios with incomplete labels, outperforming other transfer learning models. The BADWAN model excels in cross-condition fault diagnosis tasks for marine engines with incomplete target working condition labels, offering a novel solution to this field.

Funder

Research and application of Smart Ship Digital Twin Information Platform

National Key R&D Program of China

Development of liquid cargo and electromechanical simulation operation system for LNG ship

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Open Set Adaptation Network for Marine Machinery Fault Diagnosis;Journal of Marine Science and Engineering;2024-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3