The Sliding Mode Control for Piezoelectric Tip/Tilt Platform on Precision Motion Tracking

Author:

Zeng Xianfeng1234,Zhang Xiaozhi1ORCID,Nan Feng234ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541000, China

2. Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China

3. Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China

4. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China

Abstract

This paper presents the design of a sliding mode controller to compensate hysteresis nonlinearity and achieve precision motion tracking for a novel piezoelectric tip/tilt platform driven by a PZT actuator. The sliding mode control scheme is based on the unique physical characteristics of the piezoelectric tip/tilt platform. The proposed scheme effectively guides the platform state onto a predefined sliding surface and ensures its sustained movement along this manifold. This approach reduces tracking errors compared to conventional methodologies. The stability of the sliding mode control scheme is demonstrated by the Lyapunov theory framework. It achieves precise motion control with minimal tracking error on a piezoelectric tip/tilt platform. The properties of the controller have been confirmed through experimental tests. The proposed control scheme enhances the robust tracking and stability performance on the piezoelectric tip/tilt platform, outperforming traditional control schemes. Compared with the P562.6CD produced by PI Germany, the proposed innovative approach not only boosts the platform’s resolution by 32% but also implements a 33% reduction in cost.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3