Optimization Comparison of Torque Performance of Axial-Flux Permanent-Magnet Motor Using Differential Evolution and Cuckoo Search

Author:

Ge Wei12,Xiao Yiming12ORCID,Cui Feng2ORCID,Wu Xiaosheng2,Liu Wu2ORCID

Affiliation:

1. Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

To improve the torque performance of the axial-flux permanent-magnet motor (AFPMM), differential evolution (DE) and cuckoo search (CS) are proposed for optimizing the motor’s structural parameters. The object of this research is an AFPMM with a single-rotor and double-stator configuration. Firstly, finite element analysis (FEA) and BP neural network machine learning (ML) were combined to obtain an ML calculator. This calculator is about the relationships between five input structural parameters of the motor and two output torque parameters (i.e., average torque and cogging torque). Then, an optimization objective function was designed to reduce the cogging torque while increasing the average output torque. And motor structural parameters were optimized using the DE and CS algorithms, respectively. Finally, air-gap flux density, average torque, cogging torque, and ripple torque before and after the optimization of the motor structure parameters are compared by FEA. The results show that both algorithms achieved almost the same optimized structural parameters. And the optimized motor has reduced cogging torque while increasing the average output torque and reducing the ripple torque. Compared with the CS, the DE is more advantageous in terms of faster iteration speed, shorter time to obtain the optimal solution, and less resource consumption.

Funder

Shanghai Professional Technology Service Platform

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3