In Vitro Gene Expression Responses of Bovine Rumen Epithelial Cells to Different pH Stresses

Author:

Lian Hongxia,Zhang ChuankaiORCID,Liu Yifan,Li Wenjing,Fu Tong,Gao Tengyun,Zhang Liyang

Abstract

Ruminal acidosis often occurs in production, which greatly affects animal health and production efficiency. Subacute rumen acidosis (SARA) occurs when rumen pH drops rapidly to 5.5–5.8, and acute rumen acidosis (ARA) occurs when rumen pH drops below 5.0, but the molecular regulation mechanism of the rumen epithelium after the rapid decrease in pH is still unclear. Bovine rumen epithelial cells (BRECs) were cultured at pH = 7.4 (control), 5.5 (SARA), and 4.5 (ARA). Transcriptome and metabolomic methods were used to obtain the molecular-based response of BRECs to different pH treatments; pH = 4.5 can significantly induce apoptosis of BRECs. The RNA-seq experiments revealed 1381 differently expressed genes (DEGs) in the control vs. SARA groups (p < 0.05). Fibroblast growth factor (FGF) and tumor necrosis factor (TNF) were upregulated 4.25 and 6.86 fold, respectively, and TLR4 was downregulated 0.58 fold. In addition, 283 DEGs were identified in the control vs. ARA comparison (p < 0.05), and prostaglandin-endoperoxide synthase 2 (PSTG2) was downregulated 0.54 fold. Our research reveals that the MAPK/TNF signaling pathway regulates the inflammatory response of BRECs. Metabolomics identified 35 biochemical compounds that were significantly affected (p < 0.05) in control vs. SARA and 51 in control vs. ARA. Bioinformatics analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database revealed that drug metabolism-cytochrome P450 metabolic and alpha-linolenic acid metabolism changes occurred. These transcriptional and metabolic changes are related to the adaptation of BRECs to low-pH stresses. In conclusion, the combined data analyses presented a worthy strategy to characterize the cellular, transcriptomic, and metabonomic adaptation of BRECs to pH in vitro. We demonstrated transcriptional expression changes in BRECs under pH stress and activation of the molecular mechanisms controlling inflammation.

Funder

Liyang Zhang

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3