Towards Large Particle Size in Compound Feed: Using Expander Conditioning Prior to Pelleting Improves Pellet Quality and Growth Performance of Broilers

Author:

Ebbing Marco Antônio,Yacoubi NadiaORCID,Naranjo VictorORCID,Sitzmann Werner,Schedle KarlORCID,Gierus MartinORCID

Abstract

During the processing of compound feed for broilers, several changes occur that affect the physical and probably the nutritional properties of pellets, influencing animal performance. The effects of mill type, particle size (PS) and expander conditioning prior to pelleting (E + P) were combined to generate pellets. A 2 × 3 × 2 factorial arrangement was designed with two mill types (a hammer mill (HM) or roller mill (RM)), three PSs (0.8, 1.2 or 1.6 mm) and two E + Ps (with or without expander processing prior to pelleting), with six replications of 12 unsexed Ross 308 broilers each. All the processing lines reduced the PS from mash to finished pellets via secondary grinding, by 2.35 times on average. However, RM grinding required less electric power (p < 0.001). The intended PS (0.8, 1.2 or 1.6 mm) did not affect this energy consumption. E + P and the PS interacted for the pellet durability index (PDI) (p = 0.006). The worst PDI in the pellets was observed when a PS of 1.6 mm without E + P was used. Only E + P positively affected starch (p < 0.001) and amino acids’ ileal apparent digestibility (p < 0.01). Organic matter (OM) (p = 0.02) and fat (p < 0.001) digestibility, as well as AMEN (p = 0.005) content, were influenced by the PS (main effect), whereas E + P and mill type interacted with these values (p < 0.005). Lower OM digestibility and AMEN content were observed when RM without E + P was used (p = 0.001). The feed conversion ratio (FCR) was enhanced and feed intake (FI) was improved with E + P. The combination of the RM mill, a 1.6 mm mean PS, and E + P improved FCR (three-way interaction, p = 0.019)), showing that for a higher PS, E + P is necessary for animal performance. Carcass yield was, on average, 80.1%. No effects on commercial cuts (breast, legs and wings) were observed. In contrast, abdominal fat was affected by mill type * PS (p = 0.012) and E + P * PS (p = 0.048) in a two-way interaction. The highest abdominal fat indicated an imbalance in the amino acid (AA)-to-AMEN ratio. Coarse PS promoted heavier gizzards (p = 0.02) but E + P tended to reduce them (p = 0.057). The processing steps improved pellet quality and feed efficiency associated with RM, coarse PS and E + P, highlighting the positive effects of E + P on abdominal fat and AMEN content, which should be adjusted to AA or reduced at formulation. However, these results are for an experimental processing plant and may not necessarily apply to larger plants, so the use of these data and methods should be considered as guidelines for replication at production sites.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3