Genome-Wide Association Study for Udder Conformation Traits in Chinese Holstein Cattle

Author:

Nazar Mudasir,Abdalla Ismail Mohamed,Chen ZhiORCID,Ullah Numan,Liang YanORCID,Chu Shuangfeng,Xu TianleORCID,Mao Yongjiang,Yang ZhangpingORCID,Lu XubinORCID

Abstract

Udder conformation traits are one of the most economic traits in dairy cows, greatly affecting animal health, milk production, and producer profitability in the dairy industry. Genetic analysis of udder structure and scores have been developed in Holstein cattle. In our research, we conducted a genome-wide association study for five udder traits, including anterior udder attachment (AUA), central suspensory ligament (CSL), posterior udder attachment height (PUAH), posterior udder attachment width (PUAW), and udder depth (UD), in which the fixed and random model circulating probability unification (FarmCPU) model was applied for the association analysis. The heritability and the standard errors of these five udder traits ranged from 0.04 ± 0.00 to 0.49 ± 0.03. Phenotype data were measured from 1000 Holstein cows, and the GeneSeek Genomic Profiler (GGP) Bovine 100 K SNP chip was used to analyze genotypic data in Holstein cattle. For GWAS analysis, 984 individual cows and 84,407 single-nucleotide polymorphisms (SNPs) remained after quality control; a total of 18 SNPs were found at the GW significant threshold (p < 5.90 × 10−7). Many candidate genes were identified within 200kb upstream or downstream of the significant SNPs, which include MGST1, MGST2, MTUS1, PRKN, STXBP6, GRID2, E2F8, CDH11, FOXP1, SLF1, TMEM117, SBF2, GC, ADGRB3, and GCLC. Pathway analysis revealed that 58 Gene Ontology (GO) terms and 18 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched with adjusted p values, and these GO terms and the KEGG pathway analysis were associated with biological information, metabolism, hormonal growth, and development processes. These results could give valuable biological information for the genetic architecture of udder conformation traits in dairy Holstein cattle.

Funder

Earmarked Fund for Jiangsu Agricultural Industry Technology System

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Critical Care Nursing,Pediatrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3